

DRAFT REPORT

MERCIAL IN CONFIDENCE

1

MANAGED SECURITY SERVICES
PENETRATION TEST (Sample Report)

Report on the results and associated recommendations
arising from a Black Box Penetration Test of support.clientcompany.com.

Date Issued:

Report on the results and associated recommendations arising from a security test against

the Customer Interface/Dashboard Application

PENETRATION TEST– SAMPLE REPORT

2

/Document Control

VERSION CONTROL

Version Date Editor Comments

0.1 5th November DRAFT

DISTRIBUTION

Individual Date Method

 Jack Black 5th November Tresorit

PENETRATION TEST– SAMPLE REPORT

3

/Executive Summary

Pulsar has been engaged by ClientCompany to undertake security testing against the

support.clientcompany.com web application. The testing took place over the period from 21st

October to 30th October 2015. During this period the application was analysed and assessed using a

combination of standard tools and utilities and the knowledge and experience of our technical team.

Although at the time of this engagement, the application was not in production, we nonetheless

stopped short of undertaking specific tests that would either a) evidently risk the integrity and

stability of the systems, or b) actively exploit potential vulnerabilities.

Overall we believe that a reasonable level of security has been attained by the applications that

were the target of this test, but due to there being a high and some medium and low risk issues,

remedial action needs to be carried out prior to official launch of the product. Testing revealed

elements that are well-protected against several well-known vulnerabilities.

The high risk vulnerability is called Browser Reconnaissance and Exfiltration via Adaptive

Compression of Hypertext (BREACH) which exploits the compression in the underlying HTTP

protocol.

We also found that information has been disclosed by the application that could be of use to an

attacker, including the underlying web server version.

Regarding low risk issues, some misconfigurations have been detected, and some information has

been revealed. Remediation requires minimal effort. For example, Clickjacking seems not

particularly risky however it also should be attended in the near future as a real attack could

PENETRATION TEST– SAMPLE REPORT

4

superimpose transparent boxes over the actual content, causing the user to enter data into the

attacker’s site where it could be recorded and used for more serious attacks.

1

4

14

Risks	Identified

High Medium Low

Our Penetration Test has identified 1x High, 4x Medium and 14x Low risks

HIGH RISKS

The identified high risk vulnerability/recommendation is:

 BREACH attack

MEDIUM RISKS

The four identified medium risk vulnerabilities/recommendations are:

 Application error message

 No anti-virus on file uploads

PENETRATION TEST– SAMPLE REPORT

5

 TLS1/SSLv3 Renegotiation Vulnerability

 Web Application Potentially Vulnerable to Clickjacking

LOW RISKS

The fourteen identified low risk vulnerabilities/recommendations are:

 Cacheable HTTPS response

 Http Server Type And Version Disclosure

 Missing XSS protection HTTP header for IE

 No Content-Disposition header in API responses

 No forward secrecy ciphers

 No session timeout

 OPTIONS Method Enabled

 OSCP stapling not enabled

 Password field with autocomplete enabled

 Portal name information disclosure

 Simultaneous logins allowed

 Strict transport security (HSTS) not enforced

 User enumeration

 Weak password policy

We strongly recommend that ClientCompany does not disregard the findings encountered in this

report. If these vulnerabilities/recommendations are dealt with and fixed, the organisation will find

that the defence-in-depth posture of the system will improve substantially. We also recommend

that in line with good security practice, ClientCompany conducts periodic re-testing to ensure that

PENETRATION TEST– SAMPLE REPORT

6

neither intentional nor inadvertent changes have compromised their systems, and that new

vulnerabilities have not become a threat to them.

/System Overview:

DESCRIPTION

An externally facing Web Application hosted on ClientCompany Infrastructure in the Chandler

McLeod Datacentre. Application is known as the “ClientCompany Customer Support Centre”. System

is a customised 3rd party product developed by Atlassian (https://www.atlassian.com) (JiRA). User

AAA is provided by integration with Active Directory and Crowd using LDAP.

Web Application is externally (Internet) accessible to any form of client and any external source via

https://support.clientcompany.com

DNS / IP

 support.clientcompany.com. 000.000.000.000

https://www.atlassian.com)/
https://support.aurion.com/

PENETRATION TEST– SAMPLE REPORT

7

Support.clientcompany.com technical architecture / overview

Environment

Clients

 Clients should be able to connect to support.clientcompany.com from ANY IP address (no

white listing)

 Clients will only be ClientCompany customers

 Clients will be browsing to support.clientcompany.com from potentially ANY web enabled

device (e.g. phone, tablet, desktop)

External Firewall

 This is the CMG NetScaler Firewall

 support.clientcompany.com will resolve this this server

 SSL will terminate here

 support.clientcompany.com communication will then forward to reverse proxy server on

HTTP protocol (TCP: 80)

Reverse Proxy

 Reverse proxy will host the following ClientCompany web portals

http://support.aurion.com/

PENETRATION TEST– SAMPLE REPORT

8

 help.clientcompany.com

 support.clientcompany.com

 setup.clientcompany.com

 training.clientcompany.com (future)

 my.clientcompany.com (future)

 Reverse Proxy is Apache 2.4 listening on TCP port 80

Application Server

 Application Server is the Atlassian JIRA product, where customers will access the Service

Desk module which is serviced on the following URL:

 xxxxxx.xxx.xxxxx:8080

Application server is a Java application and the Java Servlet engine is Tomcat

/Goals

Primary goal of this penetration test is to validate that the appropriate security measures have been

implemented by ClientCompany at the various layers of the portal to mitigate malicious activity

occurring.1

Secondary Goals

1 Taken from ClientCompany Provided requirements document “Vulnerability Assessment requirements for support-clientcompany-

com.pdf”

http://help.aurion.com/
http://support.aurion.com/
http://setup.aurion.com/
http://training.aurion.com/
http://my.aurion.com/

PENETRATION TEST– SAMPLE REPORT

9

 To provide assurance to ClientCompany and their customers, that the web application

adequately protects against unauthorised access to information.

 To achieve a high standard security posture and to identify all potential risks with the web

application.

 To achieve confidence in their customers that their secure information has been proactively

tested by a 3rd party, and to attain an executive report stating that all risks have been

mitigated.

/Threat Assessment

ATTACK SOURCES

Through our discussions with Jack Black, and our understanding of the system, Pulsar has assessed

the most likely Attack Source to be customers (ClientCompany’s Customers and users of the

application). Secondary attack sources may be ClientCompany’s competitors. Finally,

unauthenticated actors using scanning techniques to locate vulnerable servers online for various

reasons is possible.

MOTIVATION

These users would be motivated by gaining access to unauthorised data primarily, whether it is

information about other customers or competitors looking to acquire ClientCompany’s Intellectual

Property.

ATTACK TARGET

PENETRATION TEST– SAMPLE REPORT

10

In the case of this project, the attack target is defined as support.clientcompany.com and potentially

its hosting infrastructure and network would be affected by an attack.

RISK PROFILE | LIKLIHOOD

The information/data within the system potentially contains customer sensitive information such as

employee data (bank details, dob etc.) and has been rated as medium – high value (commercially)

and therefore likelihood of attack is rated as medium.

PENETRATION TEST– SAMPLE REPORT

11

1. Web Application Penetration Test Report

This Penetration Test was undertaken using Pulsar’s own methodology using methodology and the

ASVS Version 3 (9th October 2015) framework from OWASP.

The Application is Java based JIRA, which is developed using the Struts Framework and runs on

Apache/Coyote.

The scope of this report can be summarised as follows:

 000.000.000.000

 https://support.clientcompany.com

All product names referenced herein are trademarks of their respective companies.

Rollback

During the testing the following accounts were used:

 Pen1

 Pen2

We recommend that these accounts are deleted along with any data associated with them (where

applicable).

1. AUTHENTICATION

The purpose of these tests is to validate the methods employed to authenticate a user to the

system.

PENETRATION TEST– SAMPLE REPORT

12

The authentication process was first examined for potential weaknesses and then subjected

to attacks in order to assess susceptibility to those weaknesses.

1.1.1 Enumeration

During enumeration, we examined the logon process of the application for any sensitive information

available during authentication.

The login credentials (i.e. username and password) are submitted along with relevant session details

in a HTTP POST.

1.1.2 Attack

Information from the enumeration phase was used to devise possible attacks on the logon process.

We explored different attacks on the logon process:

 Brute-force valid password

 Subvert logon

 Valid user enumeration

 Obtain credentials from network traffic

 Obtain credentials from web browser

1.1.2.1 Brute-force valid authentication

In a brute force attack, an attacker will use a program which systematically attempts to force logon

to a system by attempting all possible combinations of an authenticator (e.g. “AAAAAAAAAA”,

“AAAAAAAAAB”, “AAAAAAAAAC” – “ZZZZZZZZZZ”).

PENETRATION TEST– SAMPLE REPORT

13

The account attacked locked after a reasonable number of attempts, and for this reason, brute force

attacks against it are not feasible. This is in line with good security practice.

1.1.2.2 Subvert Logon – forceful browsing

Attackers may guess or otherwise obtain URL references to internal functions and resubmit them to

the web server in an attempt to bypass logon functions. We performed forceful browsing attacks to

attempt to obtain URL references only available after authentication.

No protected content was retrieved using these methods. Attempts to view unauthorised content

resulted in the support.clientcompany.com login screen. This is in line with good security practice.

1.1.2.3 Subvert logon - Injection

No susceptibility was found in the login to SQL injection, or other injection type attacks.

1.1.2.4 Valid user enumeration through error messages

The user logon does not allow user names to be determined through differential error messages (i.e.

it is not possible to determine from the message received whether the login has been attempted

with an invalid username, or invalid password or both) as illustrated in the below screenshots. This is

in line with good security practice.

PENETRATION TEST– SAMPLE REPORT

14

Figure 1: Invalid Login Response

There is a way however, to find out whether or not a User Name is valid. After a number of

attempts, if a user exists, a Captcha screen is displayed. There is no such restriction in case of invalid

users.

Figure 2: Captcha on unsuccessful login of a valid user

We recommend using Captcha in case of invalid users as well, so the application does not disclose

whether a given username is valid or invalid.

PENETRATION TEST– SAMPLE REPORT

15

1.1.2.5 Obtain Logon credentials from web browser

Most modern browsers offer to store usernames and passwords when entered for the convenience

of the user.

If the function is enabled, then credentials entered by the user are stored on their local computer

and retrieved by the browser on future visits to the same application. This may present a risk if a

user stores the password on an untrusted or shared machine. However correct use of browser

password managers on individually owned machines will reduce this risk.

During testing, leading browsers offered to store the username and password to logon to the

support.clientcompany.com application:

Figure 3: Autocomplete enabled on login form

If the application is likely to be used from shared systems, we recommend that browsers are

prevented from storing credentials entered into HTML forms.

PENETRATION TEST– SAMPLE REPORT

16

Pulsar recommends that the ‘autocomplete=off’ directive is embedded in the HTML source code in

order to avoid this.

1.1.2.6 Obtain Logon credentials from network traffic

Logons to the application are provided over the encrypted HTTPS protocol. This means that it is not

possible for attackers to eavesdrop on unencrypted plain-text data, or to intercept login credentials.

This is in line with good security practice.

2. SESSION HANDLING

We enumerated the mechanisms typically used to control session and tested them for suitability.

We identified to following cookies used by ClientCompany application:

 JSESSIONID

Testing indicated that cookies are used as tokens responsible for establishing and maintaining user

sessions.

1.1.3 Session approximation attack

Samples of these session identifiers were collected to assess any pattern in their generation.

The samples were analysed for obvious patterns in generation. Analysis indicates that session

identifiers appear to provide adequate entropy (i.e. high quality of randomness). This is illustrated in

the below figure:

PENETRATION TEST– SAMPLE REPORT

17

Figure 4: Chart indicating the degree of confidence in the randomness of the sample at each bit

position from the cookie obtained from the ClientCompany application

PENETRATION TEST– SAMPLE REPORT

18

Figure 5: Chart indicating the degree of confidence in the randomness of the sample at each

character position from the cookie obtained from the ClientCompany application.

It is unlikely that an attacker can ascertain the value of a valid session identifier within a reasonable

timeframe and thus hijack a valid session.

The session expiration can be extended to two weeks using the ‘Remember me’ option which can

pose a security risk. We recommend reviewing this function.

In case the user ignores the ‘Remember me’ function the session identifiers appear to expire after a

reasonable period of time, which is in line with good security practice.

PENETRATION TEST– SAMPLE REPORT

19

1.1.4 Session replay

Applications which do not properly expire valid sessions may be susceptible to input from the

session being replayed in order to gain access to the session.

After logout, we attempted to replay requests made during the session. These requests were

processed successfully by the server, and on this basis, we conclude that the session is not properly

destroyed server-side after session expiry, and it is therefore possible to replay the logon/session.

The logout function on the application also appears to operate incorrectly, as it is possible to browse

back to pages previously accessed in the same browser session after logout.

We recommend a thorough review of the way sessions are handled within the application.

1.1.5 Session fixation

Any session identifier which is set prior to the user authenticating and does not change throughout

the session could expose the application to a session fixation attack.

With regard to the logon in this case, no cookies used in session handling were detected to be set

prior to logon, and therefore an unauthenticated attacker would not be able to retrieve an unbound

cookie prior to authentication. This is in line with good security practice.

1.1.6 Interception of session identifier

All traffic is sent over the encrypted HTTPS protocol. This means that both before and after

successful authentication, an attacker with access to the network traffic or to devices such as a

proxy server would be unable to use the session identifier to hijack active user sessions. This is in

line with good security practice.

In addition to using encrypted connections, it is recommended that:

PENETRATION TEST– SAMPLE REPORT

20

 The ‘secure’ option is set on all session cookies to ensure that they are only ever sent over

encrypted (HTTPS) connections.

In this case the secure flag is set which is in line with good security practice.

 The HttpOnly flag is set on all session cookies. If the HttpOnly attribute is set on a cookie,

then the cookie cannot be accessed by client-side JavaScript. This measure can prevent

certain client-side attacks, such as Cross-Site Scripting, from trivially capturing the cookie's

value via an injected script. We recommend that [ORG] sets the HttpOnly flag by including

this attribute within the relevant Set-cookie directive.

In this case the HttpOnly flag is set which is in line with good security practice.

1.1.7 Session hijack

Session is based upon cookies returned from the browser with requests. Testing indicates that it is

possible to have concurrent sessions under the same user account. If an attack such as Cross-Site

Scripting were to succeed, it may be possible for an attacker to intercept the session undetected.

We recommend disallowing concurrent logons to help prevent session hijacking in the event of a

cross-site scripting or other session stealing attack.

3. INTER-SYSTEM COMMUNICATION

An attacker may abuse the web application’s communications with other systems, in order to have it

act as a proxy to other systems to which the application has privileged access. In the context of the

ClientCompany Application the following scenarios were explored:

 SQL Injection – Attacks on database server

PENETRATION TEST– SAMPLE REPORT

21

 HTML script injection (XSS) – Attacks on other users

We examined the recorded HTTP sessions for inputs likely to be relayed to other systems by the web

server.

1.1.8 SQL Injection

Web based applications that allow user input into an SQL statement and do not sanitise this can be

susceptible to SQL injection vulnerabilities. This may allow an attacker to:

 View data they are unauthorised to view

 Edit data they are unauthorised to edit

 Execute stored procedures they are unauthorised to execute

All user input should be parsed and sanitised to prevent the inadvertent or deliberate entry of data

that could be interpreted as SQL. This means rejecting data which is not of the correct type,

particularly in numeric fields, and removing any characters that have a special purpose within SQL

queries such as the single quote character.

To provide confidence that the method of parsing user input adopted provides adequate protection

from SQL injection attacks, we selected a sample of inputs and subjected them to common SQL

inputs e.g. “0 or 1=1”(in a numeric clause) or “’or ‘’=’”(in an alpha-numeric clause).

Canonical versions of the meta-characters were also attempted where appropriate.

These attacks are designed to return errors from backend systems if the input is relayed to them

without first being sanitised. Responses from the server were examined for indications of errors

such as:

PENETRATION TEST– SAMPLE REPORT

22

 Code Exceptions

 SQL statements

 Operating System errors

 Response delays

 Differential Responses

The application is not vulnerable to SQL injection at this time.

1.1.9 Cross-Site Scripting (stored)

Cross-Site scripting occurs when data passed to the Web Application can be echoed back to the

user’s browser without appropriate sanitization. This can allow an attacker to take control of the

browser session when a user clicks on an affected link, and can also result in unauthorised access to

the application via the theft of session tokens. The most common use of Cross-Site Scripting is to

relay another user’s cookie to the attacker through a browser script. The typical method of

executing XSS attacks relies on un-sanitised input from URL strings being reflected in HTML

responses to the user.

No evidence of vulnerability to XSS was discovered in the application. The application encodes all

potentially dangerous characters.’

1.1.10 BREACH Attack

The login service of the application is potentially vulnerable to the BREACH (Browser Reconnaissance

& Exfiltration via Adaptive Compression of Hypertext) attack.

This alert was issued because the following conditions were met:

PENETRATION TEST– SAMPLE REPORT

23

 The page content is served via HTTPS

 The server is using HTTP-level compression

 URL encoded POST input os_destination was reflected into the HTTP response body.

 HTTP response body contains a secret named atl_token

An attacker with the ability to inject partial chosen plaintext into a victim's requests and measure

the size of encrypted traffic can leverage information leaked by compression to recover targeted

parts of the plaintext.

BREACH is a category of vulnerabilities and not a specific instance affecting a specific piece of

software. To be vulnerable, a web application must:

 Be served from a server that uses HTTP-level compression

 Reflect user-input in HTTP response bodies

 Reflect a secret (such as a CSRF token) in HTTP response bodies

We recommend the following mitigations (ordered by effectiveness):

 Disabling HTTP compression

 Separating secrets from user input

 Randomizing secrets per request

 Masking secrets (effectively randomizing by XORing with a random secret per request)

 Protecting vulnerable pages with CSRF

PENETRATION TEST– SAMPLE REPORT

24

 Length hiding (by adding random number of bytes to the responses)

 Rate-limiting the requests

Also see here for more information: https://www.youtube.com/watch?v=xvVIZ4OyGnQ

4. AUTHORISATION

It is important that user data is segregated so that users cannot view or modify other users’ data.

During testing we accessed functionality which should not have been accessed directly by our test

user roles:

 http://support.clientcompany.com/servicedesk/customer/portal/10

Unauthorized users can reveal the name of the portal from the source code of the site.

Figure 6: Portal name revealed in source code

PENETRATION TEST– SAMPLE REPORT

25

We recommend that the application code is reviewed in order to fix this unnecessary information

disclosure.

PENETRATION TEST– SAMPLE REPORT

26

5. CROSS-SITE REQUEST FORGERY

CSRF is an attack which forces an end user to execute unwanted actions on a web application in

which he is currently authenticated. An attacker may force the users of a web application to execute

actions of the attacker's choosing by sending a link to an action, which must be able to be

PENETRATION TEST– SAMPLE REPORT

27

Figure 7: Insecure File Upload mechanism

There is a risk that files uploaded to the site by an attacker could be accessed by other users,

resulting in them being infected with malware. Whilst this was not exploitable within the timescale

of the test, it is possible that allowing this might make the entire web server vulnerable to

compromise.

We recommend that this feature be restricted to certain file types (for example Microsoft Office

documents, PDFs and image files) and that these are checked by file type rather than by extension,

as the latter control is trivially bypassed by renaming the file. In addition, anti-virus software should

be installed on the web server to protect against malware.

1.1.12 Click-Jacking Vulnerability

The application does not set a number of HTTP headers which can be used to increase the overall

security of the application. Whilst these headers will not work with all older browsers, they can be

PENETRATION TEST– SAMPLE REPORT

28

used in conjunction with most modern browsers to improve the overall security of the application.

Specifically, the X-Frame-Options header is not set, which means that the application can be

‘framed’ with the attacker’s content.

A real attacker would superimpose transparent boxes over the actual content, causing the user to

enter data into the attacker’s site where it could be recorded.

We recommend that ClientCompany review the configuration of their production web server and/or

the coding of the site and make sure that it is not possible for the site to be enclosed in a frame. This

can be done either by using a “frame-busting” script, or by setting appropriate HTTP headers. Setting

the X-Frame-Options header to either ‘DENY’ or ‘SAMEORIGIN’ should mitigate this attack.

1.1.13 Information Disclosure

In general, the application disclosed far too much information about its contents and structure to a

potential hacker.

1.1.13.1 Application error message

In places unnecessarily verbose error messages disclosed technologies in use.

PENETRATION TEST– SAMPLE REPORT

29

Figure 8: Error message

Error messages can provide attackers with information about application structure and also

information about the success or failure of their attacks.

We recommend that only generic error messages are provided to the end user, and any technical

information required for troubleshooting is logged to the server.

1.1.13.2 Http Server Type & Version Disclosure

The HTTP server in use discloses information about the versions of software in use in returned HTTP

headers ‣(Apache-Coyote/1.1). This information could be of use to an attacker in attempting to

target specific vulnerable web server versions.

This information could be of use to an attacker in attempting to target specific vulnerable web

server versions.

We recommend removing all banner information from the web server. For Apache this can be done

by setting ServerSignature Off and ServerTokens Prod in the Apache configuration file.

PENETRATION TEST– SAMPLE REPORT

30

7. APPLICATION CONFIGURATION

1.1.14 TLS1/SSLv3 Renegotiation Vulnerability

The tested service encrypts traffic using TLS / SSL but allows a client to insecurely renegotiate the

connection after the initial handshake.

A remote attacker could leverage this issue to inject an arbitrary amount of plaintext into the

beginning of the application protocol stream, which could facilitate man-in-the-middle attacks if the

service assumes that the sessions before and after renegotiation are from the same 'client' and

merges them at the application layer.

We recommend installing a patch to mitigate this risk.

1.1.15 Cacheable HTTPS response

The application returns data from HTTPS pages which does not have appropriate cache headers set

to prevent the content from being stored by client browser caches. As a result of this, sensitive

information may be stored on client PCs and be vulnerable to unauthorised access.

Affected services:

 https://support.clientcompany.com/rest/servicedesk/1/servicedesk/customer/avatar/10122

 https://support.clientcompany.com/s/en_AU-

sioy4b/70107/1803fe89f63e8cdc34cd0c4ef555051e/3.0.0/_/download/resour

ces/com.atlassian.servicedesk:cv-sd-shared/img/avatarpicker/icon-downarrow.svg

 https://support.clientcompany.com/s/en_AU-

sioy4b/70107/1803fe89f63e8cdc34cd0c4ef555051e/3.0.0/_/download/resour

ces/com.atlassian.servicedesk:cv-sd-shared/img/avatarpicker/icon-image- large.svg

PENETRATION TEST– SAMPLE REPORT

31

 https://support.clientcompany.com/s/en_AU-

sioy4b/70107/1803fe89f63e8cdc34cd0c4ef555051e/3.0.0/_/download/resour

ces/com.atlassian.servicedesk:cv-sd-shared/img/avatarpicker/icon-image.svg

 https://support.clientcompany.com/secure/useravatar

We recommend that appropriate Cache Control headers should be set on all HTTPS pages. Setting

Cache-control: no-cache, no-store, must-revalidate and Pragma: no-cache should intruct browsers

appropriately.

1.1.16 Missing XSS protection HTTP header for IE

The web server does not set a HTTP header which can be used to increase the overall security of the

application.

Whilst this header will not work with all older browsers, it can be used in conjunction with most

modern browsers to improve the overall security of the application.

We recommend reviewing the following header and consider implementing the options described:

X-XSS-Protection: Setting this header to '1;mode=block' will ensure that Internet Explorer 8 and

above activate their built-in anti-XSS filters.

1.1.17 No Content-Disposition header in API responses

The web server does not set a HTTP header which can be used to increase the overall security of the

application.

Under certain circumstances, the improper use of this header can lead to Reflected File Download

(RFD) attack.

We recommend reviewing the following header and consider implementing the options described:

PENETRATION TEST– SAMPLE REPORT

32

Setting Content-Disposition: header to attachment; filename="api.json" (or other appropriate

filename for the content type) to avoid having the browser parse the filename from the URL.

1.1.18 No forward secrecy ciphers

No forward secrecy ciphers were found on the server. Forward Secrecy offers substantial privacy and

confidentiality benefits for encrypted channels accessing the Internet. Unfortunately, it's benefits

are often not fully realized due to configuration errors, misconfiguring services that negatively affect

the effectiveness of Forward Secrecy, or avoiding the use of it.

If forward secrecy is utilized, encrypted communications recorded in the past cannot be retrieved

and decrypted should long-term secret keys or passwords be compromised in the future.

Use cryptographic parameters (like DH-parameter) that use a secure length that match to the

supported keylength of your certificate (>=2048 bits or equivalent Elliptic Curves).

1.1.19 OPTIONS Method Enabled

The HTTP protocol provides a number of functions as standard. Many of these are not required for

typical usage, and the availability of some may pose a risk to the web server. The detected web

server was challenged with different verbs to confirm their existence.

The webserver responded and listed functions which may not be necessary in terms of functionality,

such as the HTTP method OPTIONS, which details the communication options available.

We recommend that the verb lists are reviewed and unless other verbs are required, the client

disables everything apart from GET and POST.

PENETRATION TEST– SAMPLE REPORT

33

1.1.20 OSCP stapling not enabled

OSCP stapling is not set on the server. The advantage to OCSP Stapling is the improvement in speed

and availability of the OCSP certificate status check.

If OCSP Stapling is used, the CA will see OCSP requests only from the web site, not the web site’s end

users. Without OSCP stapling outdated CERT can be used.

We recommend checking your web server software, and change or upgrade if necessary to get OCSP

Stapling support.

1.1.21 Strict transport security (HSTS) not enforced

The remote HTTPS server is not enforcing HTTP Strict Transport Security (HSTS).

HSTS is a recently developed mechanism which aims to protect HTTPS websites against downgrade

attacks and simplifies protection against cookie hijacking. It allows web servers to declare that

browsers should only interact with it using encrypted (HTTPS) connections, and never via clear text

(HTTP) connections.

The lack of HSTS allows downgrade attacks, SSL-stripping man-in-the-middle attacks, and weakens

cookie-hijacking protections.

We recommend that the server enforces this by setting the Strict-Transport-Security header.

2. Security Policy

This section covers issues which are not specifically technical, but which nonetheless could cause the

application to be vulnerable to an attacker.

PENETRATION TEST– SAMPLE REPORT

34

2.1.1 Password Quality

The application’s password complexity requirements are too low. It may be possible to either guess

passwords or to carry out a brute force attack on them.

Passwords should be at least 8 characters long and ideally should be required to contain a mixture of

upper case letters, lower case letters, numeric and special characters.

2.1.2 Account Lockout

Accounts lock after a reasonable number of incorrect password attempts. This is in line with good

security practice.

PENETRATION TEST– SAMPLE REPORT

35

3. Tests not carried out

Certain risky or potentially disruptive tests were not carried out, specifically:

 Denial of service, flooding or “bombing”-type attacks, for obvious reasons.

 TCP, RIP and ARP protocol tampering type attacks (including fragmentation scanning). These

types of attacks are highly likely to cause application disruption.

 Brute force login attempts (except on designated accounts) and account compromise

attacks. These can lead to user accounts being locked, and therefore can effectively function

as a Denial of Service attack.

PENETRATION TEST– SAMPLE REPORT

36

4. Vulnerabilities and Recommendations

Information gained from the enumeration phase was also used in a manual search for known

vulnerabilities.

8. Definition of risk categories

Vulnerability

A flaw inherent in the security mechanism itself, or which can be reached through

security safeguards, that allows for privileged access to the location, people, business

processes or infrastructure, and/or allows corruption or deletion of data.

Weakness

A flaw inherent in the platform or environment within which a security mechanism

resides, a misconfiguration, survivability fault, usability fault, or failure to meet the

requirements of the security posture.

Concern

The issue or vulnerability presents a low risk to the business. The threat posed by the

risk should be reassessed on a regular basis as it may change. Action should still be

taken to address concerns, as failure to do so could, for example, leave the

ClientCompany vulnerable to a determined attacker with sufficient time and

resources to exploit the vulnerability.

Information Leak

A flaw inherent in the security mechanism itself, or which can be reached through

PENETRATION TEST– SAMPLE REPORT

37

security safeguards, which allows for privileged access to privileged or potentially

sensitive information concerning data, business processes, people, or infrastructure.

Pulsar utilise OWASP framework to report risk assessment levels of Low, Medium or High which are

assigned based on the following definitions (an assessment of the probability of the risk actually

existing is made where it cannot be positively verified through testing and included in this

assessment).

High

An issue which, if exploited, has the potential for severe impact on the

confidentiality, availability and/or integrity of your information assets; the issue may

be relatively straightforward to uncover or technical exploitation of this may be

relatively trivial.

Medium

An issue which, if exploited, has the potential for a moderate level of impact on the

confidentiality, availability and/or integrity of your information assets; discovery of

the issue may require a reasonable level of technical capability and it may also be

technically quite challenging to exploit or require a reasonable level of

resource/time.

Low

An issue which, if exploited, has a potentially low level of impact on the

confidentiality, availability and/or integrity of your information assets; it may also be

technically difficult to exploit in reality or require significant resource/time

PENETRATION TEST– SAMPLE REPORT

38

allocation.

This can also be summarised by the following table as the broad application of the likelihood and

impact to deriving the three levels above.

 Likelihood of Discovery/Exploitation

 Likely Possible Unlikely

Im
p

ac
t

Severe High High Medium

Moderate High Medium Low

Minor Medium Low Low

PENETRATION TEST– SAMPLE REPORT

39

9. Observations and recommendations

Where evidence, investigation and the experience of the Pulsar technical team suggests a detected

vulnerability is a false positive, it is not included in the main report.

HIGH

BREACH Attack

This web application is potentially vulnerable to the BREACH attack. BREACH (Browser

Reconnaissance & Exfiltration via Adaptive Compression of Hypertext) is a category of

vulnerabilities and not a specific instance affecting a specific piece of software.

An attacker can leverage information leaked by compression to recover targeted parts

of the plaintext.

We recommend the following mitigations:

• Disabling HTTP compression

• Separating secrets from user input

• Randomizing secrets per request

• Masking secrets (effectively randomizing by XORing with a random secret per

request)

• Protecting vulnerable pages with CSRF

• Length hiding (by adding random number of bytes to the responses)

• Rate-limiting the requests

See Section: BREACH Attack

PENETRATION TEST– SAMPLE REPORT

40

MED

Application Error Message

The application provides technical information in its error messages which could be of

use to an attacker.

On improperly secured web servers, error messages are left at their default settings,

which may disclose technology and software versions in use

Error messages can provide attackers with information about application structure and

also information about the success or failure of their attacks.

We recommend that only generic error messages are provided to the end-user and any

technical information required for troubleshooting is logged to the server.

See Section Application error message

MED

No anti-virus on file uploads

The application contains file upload controls. These were found to accept all file

types including executables and viruses.

We recommend that this feature be restricted to certain file types (for example

Microsoft Office documents, PDFs and image files) and that these are checked by file

type rather than by extension, as the latter control is trivially by-passable by renaming

the file. In addition, anti-virus software should be installed on the web server to

protect against malware.

See Section: Insecure File Upload mechanism

PENETRATION TEST– SAMPLE REPORT

41

MED

Click-Jacking Vulnerability

During testing we noted that the application did not have any defences against click-

jacking attacks.

This would allow attackers to superimpose transparent boxes over the actual content

and capture traffic intended for the site.

We recommend implementing the X-Frame-Options header and setting the value to

either ‘DENY’ or ‘SAMEORIGIN’ to address this issue.

See Section Click-Jacking Vulnerability

MED

TLS1/SSLv3 Renegotiation Vulnerability

The remote service encrypts traffic using TLS / SSL but allows a client to insecurely

renegotiate the connection after the initial handshake.

An unauthenticated, remote attacker may be able to leverage this issue to inject an

arbitrary amount of plaintext into the beginning of the application protocol stream,

which could facilitate man-in-the-middle attacks if the service assumes that the

sessions before and after renegotiation are from the same 'client' and merges them at

the application layer.

We recommend that the vendor of the software be contacted to provide a patch.

See Section: TLS1/SSLv3 Renegotiation Vulnerability

PENETRATION TEST– SAMPLE REPORT

42

LOW

No Content-Disposition header in API responses

The web server does not set a HTTP header which can be used to increase the overall

security of the application. Under certain circumstances, the improper use of this

header can lead to Reflected File Download (RFD) attack.

We recommend reviewing the following header and consider implementing the

options described:

See Section No Content-Disposition header in API responses

LOW

Cacheable Https Response

The application returns data from HTTPS pages which does not have appropriate cache

headers set to prevent the content from being stored by client browser caches.

As a result sensitive information could be stored on client PCs which could be

vulnerable to unauthorized access.

We recommend that appropriate Cache Control headers should be set on all HTTPS

pages. Setting Cache-control: no-cache, no-store, must-revalidate and Pragma: no-

cache should instruct browsers appropriately.

See Section: Cacheable HTTPS response

PENETRATION TEST– SAMPLE REPORT

43

LOW

Strict Transport Security (HSTS) Not Enforced

None of the web servers appear to enforce HTTP Strict Transport Security (HSTS).

HSTS is a recently developed mechanism which aims to protect HTTPS websites against

downgrade attacks and simplifies protection against cookie hijacking. It allows web

servers to declare that browsers should only interact with it using encrypted (HTTPS)

connections, and never via clear text (HTTP) connections.

The lack of HSTS allows downgrade attacks, SSL-stripping man-in-the-middle attacks,

and weakens cookie-hijacking protections.

We recommend that the server enforces this by setting the "Strict-Transport-Security"

header.

See Section: Strict transport security (HSTS) not enforced

LOW

Missing XSS protection HTTP header for IE

The web server does not set a HTTP header which can be used to increase the overall

security of the application.

Whilst this header will not work with all older browsers, it can be used in conjunction

with most modern browsers to improve the overall security of the application.

We recommend reviewing the following header and consider implementing the

options described:

X-XSS-Protection: Setting this header to '1;mode=block' will ensure that Internet

Explorer 8 and above activate their built-in anti-XSS filter.

See Section: Missing XSS protection HTTP header for IE

PENETRATION TEST– SAMPLE REPORT

44

LOW

No forward secrecy ciphers

No forward sercrecy ciphers were found on the server.

Forward Secrecy offers substantial privacy and confidentiality benefits for encrypted

channels accessing the Internet.

Unfortunately, it's benefits are often not fully realized due to configuration errors,

misconfiguring services that negatively affect the effectiveness of Forward Secrecy, or

avoiding the use of it.

If forward secrecy is utilized, encrypted communications recorded in the past cannot

be retrieved and decrypted should long-term secret keys or passwords be

compromised in the future.

Use cryptographic parameters (like DH-parameter) that use a secure length that match

to the supported keylength of your certificate (>=2048 bits or equivalent Elliptic

Curves).

See Section: No forward secrecy ciphers

PENETRATION TEST– SAMPLE REPORT

45

LOW

OSCP stapling not enabled

OSCP stapling is not set on the server.

The advantage to OCSP Stapling is the improvement in speed and availability of the

OCSP certificate status check.

If OCSP Stapling is used, the CA will see OCSP requests only from the web site, not the

web site’s end users.

Without OSCP stapling outdated CERT can be used.

We recommend checking your web server software, and change or upgrade if

necessary to get OCSP Stapling support.

See Section: OSCP stapling not enabled

LOW

Http Server Type And Version Disclosure

 Apache-Coyote/1.1

The HTTP server in use discloses information about the versions of software in use in

returned HTTP headers. This information could be of use to an attacker in attempting

to target specific vulnerable web server versions.

We would recommend removing all banner information from the web server. For

Apache this can be done by setting "ServerSignature Off" and "ServerTokens Prod" in

the Apache configuration file. For PHP this can be done by setting "expose_php = off"

in the php.ini file. For IIS http://learn.iis.net/page.aspx/938/urlscan-3-reference/

See Section: Http Server Type & Version Disclosure

http://learn.iis.net/page.aspx/938/urlscan-3-reference/

PENETRATION TEST– SAMPLE REPORT

46

LOW

OPTIONS Method Enabled

The HTTP protocol provides a number of functions as standard. Many of these are not

required for typical usage, and the availability of some may pose a risk to the web

server. The detected web server was challenged with different verbs to confirm their

existence.

The webserver responded and listed functions which may not be necessary in terms of

functionality, such as the HTTP method OPTIONS, which details the communication

options available.

We recommend that the verb lists are reviewed and unless other verbs are required,

the client disables everything apart from GET and POST.

See Section: OPTIONS Method Enabled

LOW

Simultaneous logins allowed

The application allows for the same user to have multiple connections to it

simultaneously.

Whilst not a serious security issue, restricting a user to a single active session can help

to mitigate some of the risks of credential sharing and stealing.

We recommend ensuring that users can only have a single active session with the

application.

See Section: Session hijack

PENETRATION TEST– SAMPLE REPORT

47

LOW

Portal name information disclosure

Unauthorized users can reveal the name of the portal from the source code of

following site:

 http://support.clientcompany.com/servicedesk/customer/portal/10

We recommend that the application code is reviewed in order to fix this unnecessary

information disclosure

See Section: AUTHORISATION

LOW

Password field with autocomplete enabled

Autocomplete is not disabled on forms within the application which process sensitive

user information or user credentials.

Autocomplete allows for browsers to cache information from HTML forms locally and

should not be enabled on any forms which process sensitive information as this will

then be cached on local PCs

We recommend setting autocomplete=off in all forms which process sensitive

information.

See Section: Obtain Logon credentials from web browser

PENETRATION TEST– SAMPLE REPORT

48

LOW

User enumeration

There is a way to find out whether a user name id valid. After a number of attempts if

a user exists a Captcha screen is displayed. There is no such restriction in case of

invalid users. We recommend using Captcha in case of invalid users as well so the

application does not disclose whether a given username is valid or invalid.

See Section: Valid user enumeration through error messages

LOW

Weak password policy

The application allows users to set weak passwords. This could allow an attacker to

successfully gain unauthorised access to the application via a password guessing

attack.

We recommend that password length and complexity are enforced for all users of the

application. These settings should be in-line with the type of information stored and

processed in the application.

See Section: Password Quality

LOW

No Session Timeout

The session expiration can be extended to two weeks using the ‘Remember me’ option

which can pose a security risk. We recommend reviewing this function.

In case the user ignores the ‘Remember me’ function the session identifiers appear to

expire after a reasonable period of time, which is in line with good security practice.

See Section: Subvert logon - Injection

PENETRATION TEST– SAMPLE REPORT

49

4.1 Issues by OWASP ASVS 3.0

The OWASP Application Security Verification Standard (ASVS) Project provides a basis

for testing web application technical security controls.

The primary aim of the OWASP Application Security Verification Standard (ASVS)

Project is to normalize the range in the coverage and level of rigor available in the

market when it comes to performing Web application security verification using a

commercially-workable open standard. The standard provides a basis for testing

application technical security controls, as well as any technical security controls in the

environment, that are relied on to protect against vulnerabilities such as Cross-Site

Scripting (XSS) and SQL injection. This standard can be used to establish a level of

confidence in the security of Web applications2

The following table shows help.clientcompany.com issues by OWASP ASVS

Category.

2 Source: https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

PENETRATION TEST– SAMPLE REPORT

50

– PENETRATION TEST– DRAFT REPORT

51

Chapter # Description Result Note

V01 Architecture, design and threat modelling 01.01 Verify that all application components are
identified and are known to be needed.

PASS See Scope

V02 Authentication 02.01 Verify all pages and resources by default
require authentication except those specifically
intended to be public (Principle of complete
mediation).

PASS

V02 Authentication 02.02 Verify that all password fields do not echo the
user's password when it is entered.

PASS

V02 Authentication 02.04 Verify all authentication controls are enforced
on the server side.

PASS

V02 Authentication 02.06 Verify all authentication controls fail securely
to ensure attackers cannot log in.

PASS

V02 Authentication 02.07 Verify password entry fields allow, or
encourage, the use of passphrases, and do not
prevent long passphrases/highly complex
passwords being entered.

FAIL See "Weak password
policy"

V02 Authentication 02.08 Verify all account identity authentication
functions (such as update profile, forgot
password, disabled / lost token, help desk or
IVR) that might regain access to the account
are at least as resistant to attack as the primary
authentication mechanism.

PASS

V02 Authentication 02.09 Verify that the changing password functionality
includes the old password, the new password,
and a password confirmation.

PASS

PENETRATION TEST– DRAFT REPORT

52

V02 Authentication 02.16 Verify that credentials are transported using a
suitable encrypted link and that all
pages/functions that require a user to enter
credentials are done so using an encrypted link.

PASS

V02 Authentication 02.17 Verify that the forgotten password function
and other recovery paths do not reveal the
current password and that the new password is
not sent in clear text to the user.

PASS

V02 Authentication 02.18 Verify that information enumeration is not
possible via login, password reset, or forgot
account functionality.

FAIL See "User enumeration"

V02 Authentication 02.19 Verify there are no default passwords in use for
the application framework or any components
used by the application (such as
'admin/password').

PASS

V02 Authentication 02.20 Verify that request throttling is in place to
prevent automated attacks against common
authentication attacks such as brute force
attacks or denial of service attacks.

PASS

V02 Authentication 02.22 Verify that forgotten password and other
recovery paths use a soft token, mobile push,
or an offline recovery mechanism.

PASS

V02 Authentication 02.24 Verify that if knowledge based questions (also
known as "secret questions") are required, the
questions should be strong enough to protect
the application.

N/A

PENETRATION TEST– DRAFT REPORT

53

V02 Authentication 02.27 Verify that measures are in place to block the
use of commonly chosen passwords and weak
passphrases.

FAIL See "Weak password
policy"

V02 Authentication 02.30 Verify that if an application allows users to
authenticate, they use a proven secure
authentication mechanism.

PASS

V02 Authentication 02.32 Verify that administrative interfaces are not
accessible to untrusted parties

PASS

V03 Session management 03.01 Verify that there is no custom session manager,
or that the custom session manager is resistant
against all common session management
attacks.

PASS

V03 Session management 03.02 Verify that sessions are invalidated when the
user logs out.

PASS

V03 Session management 03.03 Verify that sessions timeout after a specified
period of inactivity.

FAIL See "No session timeout"

V03 Session management 03.05 Verify that all pages that require authentication
have easy and visible access to logout
functionality.

PASS

V03 Session management 03.06 Verify that the session id is never disclosed in
URLs, error messages, or logs. This includes
verifying that the application does not support
URL rewriting of session cookies.

PASS

V03 Session management 03.07 Verify that all successful authentication and re-
authentication generates a new session and
session id.

PASS

PENETRATION TEST– DRAFT REPORT

54

V03 Session management 03.11 Verify that session ids are sufficiently long,
random and unique across the correct active
session base.

PASS

V03 Session management 03.12 Verify that session ids stored in cookies have
their path set to an appropriately restrictive
value for the application, and authentication
session tokens additionally set the 'HttpOnly'
and 'secure' attributes

PASS

V03 Session management 03.16 Verify that the application limits the number of
active concurrent sessions.

FAIL See "Simultaneous logins
allowed"

V03 Session management 03.17 Verify that an active session list is displayed in
the account profile or similar of each user. The
user should be able to terminate any active
session.

FAIL See "Simultaneous logins
allowed"

V03 Session management 03.18 Verify the user is prompted with the option to
terminate all other active sessions after a
successful change password process.

FAIL See "Simultaneous logins
allowed"

V04 Access control 04.01 Verify that the principle of least privilege exists
- users should only be able to access functions,
data files, URLs, controllers, services, and other
resources, for which they possess specific
authorization. This implies protection against
spoofing and elevation of privilege.

PASS

V04 Access control 04.04 Verify that access to sensitive records is
protected, such that only authorized objects or
data is accessible to each user (for example,

PASS

PENETRATION TEST– DRAFT REPORT

55

protect against users tampering with a
parameter to see or alter another user's
account).

V04 Access control 04.05 Verify that directory browsing is disabled
unless deliberately desired. Additionally,
applications should not allow discovery or
disclosure of file or directory metadata, such as
Thumbs.db, .DS_Store, .git or .svn folders.

PASS

V04 Access control 04.08 Verify that access controls fail securely. PASS

V04 Access control 04.09 Verify that the same access control rules
implied by the presentation layer are enforced
on the server side.

PASS

V04 Access control 04.13 Verify that the application or framework uses
strong random anti-CSRF tokens or has another
transaction protection mechanism.

PASS

V04 Access control 04.16 Verify that the application correctly enforces
context-sensitive authorisation so as to not
allow unauthorised manipulation by means of
parameter tampering.

FAIL See "Portal name
information disclosure"

V05 Malicious input handling 05.01 Verify that the runtime environment is not
susceptible to buffer overflows, or that security
controls prevent buffer overflows.

PASS

V05 Malicious input handling 05.03 Verify that server side input validation failures
result in request rejection and are logged.

PASS

V05 Malicious input handling 05.05 Verify that input validation routines are PASS

PENETRATION TEST– DRAFT REPORT

56

enforced on the server side.

V05 Malicious input handling 05.10 Verify that all SQL queries, HQL, OSQL, NOSQL
and stored procedures, calling of stored
procedures are protected by the use of
prepared statements or query
parameterization, and thus not susceptible to
SQL injection

PASS

V05 Malicious input handling 05.11 Verify that the application is not susceptible to
LDAP Injection, or that security controls
prevent LDAP Injection.

N/A

V05 Malicious input handling 05.12 Verify that the application is not susceptible to
OS Command Injection, or that security
controls prevent OS Command Injection.

PASS

V05 Malicious input handling 05.13 Verify that the application is not susceptible to
Remote File Inclusion (RFI) or Local File
Inclusion (LFI) when content is used that is a
path to a file.

PASS

V05 Malicious input handling 05.14 Verify that the application is not susceptible to
common XML attacks, such as XPath query
tampering, XML External Entity attacks, and
XML injection attacks.

N/A

V05 Malicious input handling 05.15 Ensure that all string variables placed into
HTML or other web client code is either
properly contextually encoded manually, or
utilize templates that automatically encode
contextually to ensure the application is not

PASS

PENETRATION TEST– DRAFT REPORT

57

susceptible to reflected, stored and DOM
Cross-Site Scripting (XSS) attacks.

V05 Malicious input handling 05.22 Make sure untrusted HTML from WYSIWYG
editors or similar are properly sanitized with an
HTML sanitizer and handle it appropriately
according to the input validation task and
encoding task.

N/A

V07 Cryptography at rest 07.02 Verify that all cryptographic modules fail
securely, and errors are handled in a way that
does not enable oracle padding.

N/A

V07 Cryptography at rest 07.07 Verify that cryptographic algorithms used by
the application have been validated against
FIPS 140-2 or an equivalent standard.

N/A

V08 Error handling and logging 08.01 Verify that the application does not output
error messages or stack traces containing
sensitive data that could assist an attacker,
including session id, software/framework
versions and personal information

FAIL See "Application error
message"

V09 Data protection 09.01 Verify that all forms containing sensitive
information have disabled client side caching,
including autocomplete features.

FAIL See "Password field with
autocomplete set"

V09 Data protection 09.03 Verify that all sensitive data is sent to the
server in the HTTP message body or headers

PASS

PENETRATION TEST– DRAFT REPORT

58

(i.e., URL parameters are never used to send
sensitive data).

V09 Data protection 09.04 Verify that the application sets appropriate
anti-caching headers as per the risk of the
application, such as the following:
Expires: Tue, 03 Jul 2001 06:00:00 GMT
Last-Modified: {now} GMT
Cache-Control: no-store, no-cache, must-
revalidate, max-age=0
Cache-Control: post-check=0, pre-check=0
Pragma: no-cache

FAIL See "Cacheable HTTPS
response"

V09 Data protection 09.09 Verify that data stored in client side storage -
such as HTML5 local storage, session storage,
IndexedDB, regular cookies or Flash cookies -
does not contain sensitive or PII).

N/A

V10 Communications 10.01 Verify that a path can be built from a trusted
CA to each Transport Layer Security (TLS)
server certificate, and that each server
certificate is valid.

PASS

V10 Communications 10.03 Verify that TLS is used for all connections
(including both external and backend
connections) that are authenticated or that
involve sensitive data or functions, and does
not fall back to insecure or unencrypted
protocols. Ensure the strongest alternative is
the preferred algorithm.

FAIL See "BREACH attack"

PENETRATION TEST– DRAFT REPORT

59

V10 Communications 10.03 Verify that TLS is used for all connections
(including both external and backend
connections) that are authenticated or that
involve sensitive data or functions, and does
not fall back to insecure or unencrypted
protocols. Ensure the strongest alternative is
the preferred algorithm.

FAIL See "TLS1/SSLv3
renegotiation
vulnerability"

V10 Communications 10.11 Verify that HTTP Strict Transport Security
headers are included on all requests and for all
subdomains, such as Strict-Transport-Security:
max-age=15724800; includeSubdomains

FAIL See "Strict transport
security (HSTS) not
enforced"

V10 Communications 10.13 Ensure forward secrecy ciphers are in use to
mitigate passive attackers recording traffic.

FAIL See "No forward secrecy
ciphers"

V10 Communications 10.14 Verify that proper certification revocation, such
as Online Certificate Status Protocol (OSCP)
Stapling, is enabled and configured.

FAIL See "OSCP stapling not
enabled"

V10 Communications 10.15 Verify that only strong algorithms, ciphers, and
protocols are used, through all the certificate
hierarchy, including root and intermediary
certificates of your selected certifying
authority.

PASS

V11 HTTP security configuration 11.01 Verify that the application accepts only a
defined set of required HTTP request methods,
such as GET and POST are accepted, and
unused methods (e.g. TRACE, PUT, and DELETE)
are explicitly blocked.

FAIL See "Options method
enabled"

PENETRATION TEST– DRAFT REPORT

60

V11 HTTP security configuration 11.02 Verify that every HTTP response contains a
content type header specifying a safe character
set (e.g., UTF-8, ISO 8859-1).

PASS

V11 HTTP security configuration 11.05 Verify that the HTTP headers or any part of the
HTTP response do not expose detailed version
information of system components.

FAIL See "HTTP server type
and version disclosure"

V11 HTTP security configuration 11.06 Verify that all API responses contain X-Content-
Type-Options: nosniff and Content-Disposition:
attachment; filename="api.json" (or other
appropriate filename for the content type).

FAIL See "No Content-
Disposition header in API
responses"

V11 HTTP security configuration 11.07 Verify that the Content Security Policy V2 (CSP)
is in use in a way that either disables inline
JavaScript or provides an integrity check on
inline JavaScript with CSP noncing or hashing.

FAIL See "Web application
potentially vulnerable to
clickjacking"

V11 HTTP security configuration 11.08 Verify that the X-XSS-Protection: 1;
mode=block header is in place.

FAIL See "Missing XSS
protection HTTP header
for IE"

V16 File and resources 16.01 Verify that URL redirects and forwards only
allow whitelisted destinations, or show a
warning when redirecting to potentially
untrusted content.

PASS

V16 File and resources 16.02 Verify that untrusted file data submitted to the
application is not used directly with file I/O
commands,_particularly to protect against path
traversal, local file include, file mime type, and
OS command injection vulnerabilities.

PASS

PENETRATION TEST– DRAFT REPORT

61

V16 File and resources 16.03 Verify that files obtained from untrusted
sources are validated to be of expected type
and scanned by antivirus scanners to prevent
upload of known malicious content.

FAIL See "No anti-virus on file
uploads"

V16 File and resources 16.04 Verify that untrusted data is not used within
inclusion, class loader, or reflection capabilities
to prevent remote/local file inclusion
vulnerabilities.

PASS

V16 File and resources 16.05 Verify that untrusted data is not used within
cross-domain resource sharing (CORS) to
protect against arbitrary remote content.

PASS

V16 File and resources 16.08 Verify the application code does not execute
uploaded data obtained from untrusted
sources.

PASS

V16 File and resources 16.09 Do not use Flash, Active-X, Silverlight, NACL,
client-side Java or other client side
technologies not supported natively via W3C
browser standards.

PASS

V17 Mobile 17.01 Verify that ID values stored on the device and
retrievable by other applications, such as the
UDID or IMEI number are not used as
authentication tokens.

N/A

V17 Mobile 17.02 Verify that the mobile app does not store
sensitive data onto potentially unencrypted
shared resources on the device (e.g. SD card or
shared folders).

N/A

PENETRATION TEST– DRAFT REPORT

62

V17 Mobile 17.03 Verify that sensitive data is not stored
unprotected on the device, even in system
protected areas such as key chains.

N/A

V17 Mobile 17.07 Verify that the application sensitive code is laid
out unpredictably in memory (For example
ASLR).

N/A

V17 Mobile 17.09 Verify that the app does not export sensitive
activities, intents, content providers etc., for
other mobile apps on the same device to
exploit.

N/A

V17 Mobile 17.11 Verify that the appÕs exposed activities,
intents, content providers etc. validate all
inputs.

N/A

V18 Web services 18.01 Verify that the same encoding style is used
between the client and the server.

PASS

V18 Web services 18.02 Verify that access to administration and
management functions within the Web Service
Application is limited to web service
administrators.

N/A

V18 Web services 18.03 Verify that XML or JSON schema is in place and
verified before accepting input.

N/A

V18 Web services 18.04 Verify that all input is limited to an appropriate
size limit.

N/A

V18 Web services 18.05 Verify that SOAP based web services are
compliant with Web Services-Interoperability
(WS-I) Basic Profile at minimum.

N/A

PENETRATION TEST– DRAFT REPORT

63

V18 Web services 18.06 Verify the use of session-based authentication
and authorization. Please refer to sections 2, 3
and 4 for further guidance. Avoid the use of
static "API keys" and similar.

PASS

V18 Web services 18.07 Verify that the REST service is protected from
Cross-Site Request Forgery.

PASS

V19 Configuration 19.01 All components should be up to date with
proper security configuration(s) and version(s).
This should include removal of unneeded
configurations and folders such as sample
applications, platform documentation, and
default or example users.

PASS

